We set a simple goal: to answer most of the questions that you have for free, in a reliable and simple language.
Main page
WAREHOUSES
Space manufactory telemechanics

Space manufactory telemechanics

Space manufacturing is the production of manufactured goods in an environment outside a planetary atmosphere. Typically this includes conditions of microgravity and hard vacuum. Manufacturing in space has several potential advantages over Earth-based industry. The space environment is expected to be beneficial for production of a variety of products.

VIDEO ON THE TOPIC: How Additive Manufacturing Is Advancing the Space Industry

Dear readers! Our articles talk about typical ways to resolve Space manufactory telemechanics, but each case is unique.

If you want to know, how to solve your particular problem - contact the online consultant form on the right or call the numbers on the website. It is fast and free!

Content:

Telemechanics Inc NSN Parts Catalog

Space manufacturing is the production of manufactured goods in an environment outside a planetary atmosphere. Typically this includes conditions of microgravity and hard vacuum. Manufacturing in space has several potential advantages over Earth-based industry. The space environment is expected to be beneficial for production of a variety of products. Once the heavy capitalization costs of assembling the mining and manufacturing facilities is paid, the production will need to be economically profitable in order to become self-sustaining and beneficial to society.

The most significant cost is overcoming the energy hurdle for boosting materials into orbit. Once this barrier is significantly reduced in cost per kilogram , the entry price for space manufacturing can make it much more attractive to entrepreneurs.

Economic requirements of space manufacturing imply a need to collect the requisite raw materials at a minimum energy cost. The economical movement of material in space is directly related to the delta-v , or change in velocity required to move from the mining sites to the manufacturing plants.

Near-Earth asteroids , Phobos , Deimos and the lunar surface have a much lower delta-v compared to launching the materials from the surface of the Earth to Earth orbit. During the Soyuz 6 mission of , Russian astronauts performed the first welding experiments in space. Three different welding processes were tested using a hardware unit called Vulkan.

The tests included welding aluminum , titanium , and stainless steel. The Skylab mission, launched in May , served as a laboratory to perform various space manufacturing experiments.

The station was equipped with a materials processing facility that included a multi-purpose electric furnace , a crystal growth chamber, and an electron beam gun. Among the experiments to be performed was research on molten metal processing; photographing the behavior of ignited materials in zero-gravity; crystal growth; processing of immiscible alloys ; brazing of stainless steel tubes, electron beam welding , and the formation of spheres from molten metal.

The crew spent a total of 32 man-hours on materials science and space manufacturing investigation during the mission. Microgravity research in materials processing continued in using the Spacelab facility. This module has been carried into orbit 26 times aboard the Space Shuttle , as of [update].

In this role the shuttle served as an interim, short-duration research platform before the completion of the International Space Station. This demonstration platform used the vacuum created in the orbital wake to manufacture thin films of gallium arsenide and aluminum gallium arsenide. On May 31, , the recoverable, unmanned Foton-M2 laboratory was launched into orbit. Among the experiments were crystal growth and the behavior of molten-metal in weightlessness. The completion of the International Space Station has provided expanded and improved facilities for performing industrial research.

These have and will continue to lead to improvements in our knowledge of materials sciences, new manufacturing techniques on Earth, and potentially some important discoveries in space manufacturing methods. There are several unique differences between the properties of materials in space compared to the same materials on the Earth.

These differences can be exploited to produce unique or improved manufacturing techniques. For most manufacturing applications, specific material requirements must be satisfied. Mineral ores need to be refined to extract specific metals , and volatile organic compounds will need to be purified. Ideally these raw materials are delivered to the processing site in an economical manner, where time to arrival, propulsion energy expenditure, and extraction costs are factored into the planning process.

Minerals can be obtained from asteroids , the lunar surface, or a planetary body. Volatiles could potentially be obtained from a comet , carbonaceous chondrite or "C-Type" asteroids, or the moons of Mars or other planets. It may also prove possible to extract hydrogen in the form of water ice or hydrated minerals from cold traps on the poles of the Moon.

Another potential source of raw materials, at least in the short term, is recycled orbiting satellites and other man-made objects in space. Some consideration was given to the use of the Space Shuttle external fuel tanks for this purpose, but NASA determined that the potential benefits were outweighed by the increased risk to crew and vehicle [ citation needed ].

Unless the materials processing and the manufacturing sites are co-located with the resource extraction facilities, the raw materials will need to be moved about the solar system. There are several proposed means of providing propulsion for this material, including solar sails , electric sails , magnetic sails , electric ion thrusters , or mass drivers this last method uses a sequence of electromagnets mounted in a line to accelerate a conducting material.

At the materials processing facility, the incoming materials will need to be captured by some means. Maneuvering rockets attached to the load can park the content in a matching orbit. Alternatively, if the load is moving at a low delta-v relative to the destination, then it can be captured by means of a mass catcher.

This could consist of a large, flexible net or inflatable structure that would transfer the momentum of the mass to the larger facility. Once in place, the materials can be moved into place by mechanical means or by means of small thrusters. Materials can be used for manufacturing either in their raw form, or by processing them to extract the constituent elements. Processing techniques include various chemical , thermal , electrolytic , and magnetic methods for separation.

In the near term, relatively straightforward methods can be used to extract aluminum , iron , oxygen , and silicon from lunar and asteroidal sources. Less concentrated elements will likely require more advanced processing facilities, which may have to wait until a space manufacturing infrastructure is fully developed.

Some of the chemical processes will require a source of hydrogen for the production of water and acid mixtures. Hydrogen gas can also be used to extract oxygen from the lunar regolith , although the process is not very efficient. Alternatively, oxygen can be liberated from the lunar regolith without reusing any imported materials by heating the regolith to 2, C in a vacuum. This was tested on Earth with lunar simulant in a vacuum chamber.

Eric Cardiff calls the remainder slag. This process is highly efficient in terms of imported materials used up per batch, but is not the most efficient process in energy per kilogram of oxygen. One proposed method of purifying asteroid materials is through the use of carbon monoxide CO. This vapor can then be distilled to separate out the metal components, and the CO can then be recovered by another heating cycle.

Thus an automated ship can scrape up loose surface materials from, say, the relatively nearby Nereus in delta-v terms , process the ore using solar heating and CO, and eventually return with a load of almost pure metal.

The economics of this process can potentially allow the material to be extracted at one-twentieth the cost of launching from Earth, but it would require a two-year round trip to return any mined ore. Due to speed of light constraints on communication, manufacturing in space at a distant point of resource acquisition will either require completely autonomous robotics to perform the labor, or a human crew with all the accompanying habitat and safety requirements.

If the plant is built in orbit around the Earth , or near a manned space habitat , however, telecheric devices can be used for certain tasks that require human intelligence and flexibility. Solar power provides a readily available power source for thermal processing. Even with heat alone, simple thermally-fused materials can be used for basic construction of stable structures.

Bulk soil from the Moon or asteroids has a very low water content, and when melted to form glassy materials is very durable.

These simple, glassy solids can be used for the assembly of habitats on the surface of the Moon or elsewhere.

The solar energy can be concentrated in the manufacturing area using an array of steerable mirrors. The availability and favorable physical properties of metals will make them a major component of space manufacturing. Most of the metal handling techniques used on Earth can also be adopted for space manufacturing.

A few of these techniques will need significant modifications due to the microgravity environment. The production of hardened steel in space will introduce some new factors. Carbon only appears in small proportions in lunar surface materials and will need to be delivered from elsewhere. Waste materials carried by humans from the Earth is one possible source, as are comets.

The water normally used to quench steel will also be in short supply, and require strong agitation. Casting steel can be a difficult process in microgravity, requiring special heating and injection processes, or spin forming. Heating can be performed using sunlight combined with electrical heaters. The casting process would also need to be managed to avoid the formation of voids as the steel cools and shrinks. Various metal-working techniques can be used to shape the metal into the desired form.

The standard methods are casting, drawing , forging , machining , rolling , and welding. Both rolling and drawing metals require heating and subsequent cooling. Forging and extrusion can require powered presses, as gravity is not available. Electron beam welding has already been demonstrated on board the Skylab , and will probably be the method of choice in space. Machining operations can require precision tools which will need to be imported from the Earth for some duration.

New space manufacturing technologies are being studied at places such as Marshall's National Center for Advanced Manufacturing. The methods being investigated include coatings that can be sprayed on surfaces in space using a combination of heat and kinetic energy, and electron beam free form fabrication [6] of parts.

Approaches such as these, as well as examination of material properties that can be investigated in an orbiting laboratory, will be studied on the International Space Station by NASA and Made In Space, Inc. The option of 3D printing items in space holds many advantages over manufacturing situated on Earth.

With 3D printing technologies, rather than exporting tools and equipment from Earth into space, astronauts have the option to manufacture needed items directly.

On-demand patterns of manufacturing make long-distance space travel more feasible and self-sufficient as space excursions require less cargo. Mission safety is also improved. The Made In Space, Inc. Additionally, 3D printing in space can also account for the printing of meals. NASA 's Advanced Food Technology program is currently investigating the possibility of printing food items in order to improve food quality, nutrient content, and variety.

There are thought to be a number of useful products that can potentially be manufactured in space and result in an economic benefit. Research and development is required to determine the best commodities to be produced, and to find efficient production methods.

The following products are considered prospective early candidates:. As the infrastructure is developed and the cost of assembly drops, some of the manufacturing capacity can be directed toward the development of expanded facilities in space, including larger scale manufacturing plants.

These will likely require the use of lunar and asteroid materials, and so follow the development of mining bases. Rock is the simplest product, and at minimum is useful for radiation shielding. It can also be subsequently processed to extract elements for various uses. Water from lunar sources, Near Earth Asteroids or Martian moons is thought to be relatively cheap and simple to extract, and gives adequate performance for many manufacturing and material shipping purposes.

Separation of water into hydrogen and oxygen can be easily performed in small scale, but some scientists [3] believe that this will not be performed on any large scale initially due to the large quantity of equipment and electrical energy needed to split water and liquify the resultant gases. Water is useful as a radiation shield and in many chemical processes.

Browse Telemechanics Inc Aircraft Parts List

The Moon. And unlike most Lunar sterotypes, that one is actually true. And for good reason; Who else is going to fix something when it inevitily breaks down?

Are you looking for specific parts from the manufacturer Telemechanics Inc? All of our parts undergo extensive quality assurance measures including visual inspections and paperwork verification. Our shipping and supply chain offers some of the shortest lead times and quickest shipping times in the industry.

Since then we have developed and operated an additive manufacturing facility in space and made advances to robotically manufacture and assemble space optimized structures in space. Archinaut One will be launched in to test its robotic additive space construction technology. Other near-term applications for Archinaut might include antennas, space-based telescopes and large space-based reflectors. Archinaut One will use a robotic arm and their Extended Structure Additive Manufacturing Machine ESAMM to autonomously and precisely place components and 3D print two 10m beams, which will deploy two solar arrays while the beams are being manufactured.

Space manufacturing

Электронная почта соединила безопасность обычной почты со скоростью телефонной связи. С тех пор как сообщения стали передаваться по подземным волоконно-оптическим линиям, а не с помощью радиоволн, они оказались полностью защищенными от перехвата - таков по крайней мере был замысел. В действительности перехват электронных писем, передвигаемых по Интернету, был детской забавой для технических гуру из АНБ. Интернет не был создан, как считали многие, в эру домашних персональных компьютеров.

Он появился тремя десятилетиями ранее благодаря усилиям специалистов из министерства обороны и представлял собой громадную сеть компьютеров, призванных обеспечить безопасность правительственной связи на случай ядерной войны. Профессионалы Интернета стали глазами и ушами АНБ. Люди, занимавшиеся нелегальной деятельностью с использованием электронной почты, быстро убедились в том, что их секреты больше не являются их частным достоянием. ФБР, Налоговое управление, Агентство по борьбе с наркотиками и другие правоохранительные агентства США - с помощью опытных штатных хакеров - сумели арестовать и предать суду гораздо больше преступников.

Разумеется, когда пользователи компьютеров во всем мире обнаружили, что американское правительство имеет широкий доступ к их электронной почте, раздались возмущенные голоса.

Testing space manufacturing on Earth

Он снова с силой пнул ногой педаль стартера. Пуля пролетела мимо в тот миг, когда маленький мотоцикл ожил и рванулся. Беккер изо всех сил цеплялся за жизнь. Мотоцикл, виляя, мчался по газону и, обогнув угол здания, выехал на шоссе.

Каждый день военные оценивают моментальные спутниковые снимки всех передвижений по территории потенциальных противников. Инженеры компании Локхид скачивают подробные чертежи новых систем вооружения.

- На ней была майка с британским флагом. Беккер рассеянно кивнул: - Хорошо. Бело-красно-синие волосы, майка, серьга с черепом в ухе. Что .

- Где, черт возьми, регистратура. За едва заметным изгибом коридора Беккер услышал голоса. Он пошел на звук и уткнулся в стеклянную дверь, за которой, судя по доносящемуся оттуда шуму и гвалту, происходило нечто вроде драки.

Джабба встряхнул бутылочку с острой приправой Доктор Пеппер. - Выкладывай. - Может быть, все это чепуха, - сказала Мидж, - но в статистических данных по шифровалке вдруг вылезло что-то несуразное.

Я надеюсь, что ты мне все объяснишь. - В чем же проблема? - Джабба сделал глоток своей жгучей приправы. - Передо мной лежит отчет, из которого следует, что ТРАНСТЕКСТ бьется над каким-то файлом уже восемнадцать часов и до сих пор не вскрыл шифр.

Премного благодарен, приятель! - крикнул тот ему вслед.  - Увидишь Меган, передавай от меня привет! - Но Беккер уже исчез. Двуцветный вздохнул и поплелся к танцующим. Он был слишком пьян, чтобы заметить идущего следом за ним человека в очках в тонкой металлической оправе.

Выбравшись наружу, Беккер оглядел стоянку в поисках такси. Ни одной машины. Он подбежал к крепко сбитому охраннику.

Space manufacturing is the production of manufactured goods in an environment outside a planetary atmosphere. Typically this includes conditions of microgravity and hard vacuum. Manufacturing in space has several potential advantages over Earth-based essplicite.comg: telemechanics ‎| Must include: telemechanics.

Что ж, попробуйте! - Он начал нажимать кнопки мобильника.  - Ты меня недооценил, сынок. Никто позволивший себе угрожать жизни моего сотрудника не выйдет отсюда.  - Он поднес телефон к уху и рявкнул: - Коммутатор. Соедините меня со службой безопасности.

Так почему… чего же он так долго ждал. - Потому что ТРАНСТЕКСТ никак не мог вскрыть этот файл. Он был зашифрован с помощью некоего нового алгоритма, с которым фильтры еще не сталкивались.

Джаббе потребовалось почти шесть часов, чтобы их настроить.

Коммандер, если вы все еще горите желанием узнать алгоритм Танкадо, то можете заняться этим без. Я хочу уйти. Стратмор глубоко вздохнул.

Нуматака в очередной раз посмотрел на часы.

Единственное, что нам нужно, - осуществить такую подмену. Сьюзан сочла его план безукоризненным. Вот он - истинный Стратмор. Он задумал способствовать распространению алгоритма, который АНБ с легкостью взломает.

Он в последний раз взглянул на Клушара. - Капля Росы. Вы уверены. Но Пьер Клушар провалился в глубокое забытье. ГЛАВА 23 Сьюзан, сидя в одиночестве в уютном помещении Третьего узла, пила травяной чай с лимоном и ждала результатов запуска Следопыта. Как старшему криптографу ей полагался терминал с самым лучшим обзором.

Спасибо, не стоит. Я возьму такси.  - Однажды в колледже Беккер прокатился на мотоцикле и чуть не разбился. Он больше не хотел искушать судьбу, кто бы ни сидел за рулем.

Comments 3
Thanks! Your comment will appear after verification.
Add a comment

  1. Vudom

    Such did not hear